
Mechanics of Solids: Energy principles 

Work and Energy in linear elasticity

• Potential energy 
• Stability and uniqueness of solution

• Principle of virtual work
• Principle of minimum potential energy
• Examples

From the book: Mechanics of Continuous Media: an Introduction
1. J Botsis and M Deville, PPUR 2018.
2. J Botsis, Appendix A Notes on Energy



Mechanics of Solids: Equations of Elasticity

We consider a solid, of an isotropic homogeneous 
linearly elastic material, and subjected to body forces 
over it and prescribed displacements or tractions 
on its boundary.  The following equations are available: 

FORMULATION OF THE BOUNDARY VALUE PROBLEM

1. The 3 eqs of equilibrium:

( f is body force vector)

2. The 6 equations defining the strain-displacement relation:
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3. The 6 equations defining the isotropic homogeneous 
stress-strain relation:
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There are 15 equations with 15 unknowns:

Three displacement components:

Six strain components:

Six stress components:   

The problem is well posed

We know that a linear elastic solid satisfies 
the second principle of thermodynamics
and that there exists a potential function 
which, has a quadratic form in the strains 
(or the stresses).
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Mechanics of Solids: Navier equations

There are two ways to combine the 15 equations:

The first one is to consider the displacement 
components          as the unknowns. 

Introduce                                           in 

to obtain:

Introduce it to the equilibrium equations:

to obtain:

NAVIER’S EQUATIONS
These are the three Navier’s Equations with 
the three displacement components 
as the unknowns.

With the displacements known we go back to:

to calculate the strains

With the strains known we obtain the stresses 

from 

Note that there is no need to satisfy the 
compatibility equations:

because we calculate           from
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Mechanics of Solids: Beltrami-Michell equations

There are two ways to combine the 15 equations:

We an consider the stress components         as unknowns.     

Then we introduce the strain-stress relations:

In the compatibility equations

to obtain:

From the equilibrium equations (take the derivatives):

BELTRAMI-MICHELL COMPATIBILITY EQUATIONS

Taking the trace of the last equation we get:

Using it in the last equation we obtain
the Beltrami-Michell compatibility Eqs:

In several problems the body forces can be 
assumed negligible. We have the simplification: 
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Mechanics of Solids: Boundary Value Problems in elasticity

To solve the system of equations we need the appropriate 
boundary conditions: In general we have three of them.

We consider a body occupying a domain       in 3 with 
boundary         .

We divide the surface boundary into two parts so that:

, 

represents the part where displacements are 
prescribed:

on 

represents the part where stress vector is prescribed:

on 

BOUNDARY CONDITIONS
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type I, or mixed BVP: we have to  specify tractions and 
displacements on the corresponding parts of boundaries.

type II:  we have to specify displacement on the 
Corresponding boundary conditions.

type III: we have to  specify tractions on the 
corresponding part of boundaries:



TYPE I or mixed BVP: we have to  specify tractions and displacements on the 
corresponding parts of boundaries:

Navier Equations to solve                                                          over 

Subjected to  Boundary Conditions:

Tractions:                            on

Displacements:                    on   
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Navier Equations to solve                                                          over 

Subjected to Boundary Conditions

Displacements:                    on   i iu u= uS

, ,( ) 0k ki i jj iu u fλ µ µ+ + + = Ω

TYPE II: Displacement Boundary Conditions
we only have displacement boundary conditions ,u tS S≠ ∅ =∅      
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TYPE III: we have to  specify tractions on the corresponding part of boundaries:

Navier Equations to solve                                                          over 

Subjected to Boundary Conditions

Tractions:                            on
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The traction BVP in terms of stress components :

Here the following equations constitute the problem: 

1. Equations equilibrium                             

2. Stress compatibility equations:

3. Prescribed tractions on the surface:                       
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Mechanics of Solids: Energy Principles

Theorem of Work and Energy:

Multiply the equations of Equilibrium : 

by the displacement        and integrate over volume

To proceed we will use the following in the last relation :
1. The symmetry of the stress tensor

2. The Cauchy formula  

3. The relation 
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Mechanics of Solids: Energy Principles

Theorem of Work and Energy:
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Mechanics of Solids: Energy Principles

Theorem of Work and Energy:

Use                                        

and recall

in the integral on the left hand side 
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the theorem of work and energy, 
or principle of conservation of 
mechanical energy, 
for an isotropic linearly elastic solid. 



Mechanics of Solids: Energy Principles

Potential Energy:  

It is defined as the difference of

Strain Energy:

Work of the applied forces:

It is an important energy function in
predicting equilibrium and modeling
phenomena such as fracture. 
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Mechanics of Solids: Energy Principles

Strain Energy ‘partition’:

Use the following deviatoric components

The strain energy density is expressed as:

Energy for 
volume changes

Energy for 
shape changes

Stability condition by definition 
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Mechanics of Solids: Energy Principles

Uniqueness of solution:

Consider two solutions 

satisfying the filed equations

and the boundary conditions
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( w is an infinitesimal rigid body rotation).



Mechanics of Solids: Energy Principles

Uniqueness of solution

Define the differences:

satisfy the equations
with

and the boundary conditions
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Mechanics of Solids: Energy Principles

Theorem of Virtual Work 

Virtual displacement:
• It is an arbitrary displacement which does not

affect the force system acting on the body
during its application.

• Its components are small,
continuous and single valued.

• All forces remain constant in magnitude and
direction during application of virtual
displacement.
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For a body in equilibrium 
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Virtual 
strain energy

Virtual  work
by applied forces

Multiply the equilibrium Eqs by         and follow
the same steps as in the case of the theorem 
of work and energy.

iδu



Mechanics of Solids: Energy Principles

Principle of minimum potential
energy 

of all displacement fields satisfying the continuity 
and boundary conditions, of the solid in 
equilibrium, the actual displacement field makes 
the potential energy a stationary value.

From the principle of virtual work we have: 
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Mechanics of Solids: Energy Principles

Theorem of minimum potential
energy 

For a body in equilibrium and having a solution 

For any kinematically admissible displacement
the potential energies satisfy the condition 

Define

Use the principle of virtual work to obtain: 
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A displacement field         is kinematically
admissible if it respects the assigned 
displacements on the boundary: 
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Mechanics of Solids: Energy Principles

Application to Finite Elements:

A body is discretized with m triangular elements

1x

•

•

•

2x

j k

l

For each element define
1. Nodal displacements:

2. Displacement functions:

3. Strain displacement relations:

4. Constitutive relations for each element:
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Principle of minimum potential energy for the
entire body: 

1 1 1
0

e e e

m m m

ij ij i i i iσ δε dv t δu ds f δu dv
Ω ∂Ω Ω

− − =∑ ∑ ∑∫ ∫ ∫



Mechanics of Solids: Energy Principles

Application to Finite Elements:

A body is discretized with m triangular elements

1x

•

•

•

2x
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l

Principle of minimum potential energy for the
Entire body:

We introduce the displacements, strain-displacements 
and constitutive equations to obtain 
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For the entire body we have
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