

Mechanics of Solids: Energy principles

Work and Energy in linear elasticity

- Potential energy
- Stability and uniqueness of solution
- Principle of virtual work
- Principle of minimum potential energy
- Examples

From the book: Mechanics of Continuous Media: an Introduction

1. J Botsis and M Deville, PPUR 2018.
2. J Botsis, Appendix A Notes on Energy

Mechanics of Solids: Equations of Elasticity

FORMULATION OF THE BOUNDARY VALUE PROBLEM

We consider a solid, of an isotropic homogeneous linearly elastic material, and subjected to body forces over it and prescribed displacements or tractions on its boundary. The following equations are available:

1. The 3 eqs of equilibrium:

$$\sigma_{ij,j} + f_i = 0 \quad , \quad \operatorname{div} \sigma + \mathbf{f} = 0$$

(\mathbf{f} is body force vector)

2. The 6 equations defining the *strain-displacement relation*:

$$\varepsilon_{ij} = \frac{1}{2}(u_{i,j} + u_{j,i}) \quad , \quad \boldsymbol{\varepsilon} = \frac{1}{2}(\nabla \mathbf{u} + (\nabla \mathbf{u})^T)$$

3. The 6 equations defining the *isotropic homogeneous stress-strain relation*:

$$\sigma_{ij} = \lambda \varepsilon_{kk} \delta_{ij} + 2\mu \varepsilon_{ij} \quad , \quad \boldsymbol{\sigma} = \lambda \operatorname{tr} \boldsymbol{\varepsilon} \mathbf{I} + 2\mu \boldsymbol{\varepsilon}$$

There are 15 equations with 15 unknowns:

Three displacement components: u_i

Six strain components: ε_{ij}

Six stress components: σ_{ij}

→ The problem is well posed

We know that a linear elastic solid satisfies the second principle of thermodynamics and that there exists a potential function which, has a quadratic form in the strains (or the stresses).

$$W(\varepsilon_{ij}) = \frac{1}{2} \lambda \varepsilon_{ii} \varepsilon_{kk} + \mu \varepsilon_{ij} \varepsilon_{ij} \quad \text{with} \quad \sigma_{ij} = \frac{\partial W(\varepsilon_{ij})}{\partial \varepsilon_{ij}}$$

Mechanics of Solids: Navier equations

NAVIER'S EQUATIONS

There are two ways to combine the 15 equations:

The first one is to consider the displacement components u_i as the unknowns.

→ Introduce $\varepsilon_{ij} = \frac{1}{2}(u_{i,j} + u_{j,i})$ in

$$\sigma_{ij} = \lambda \varepsilon_{kk} \delta_{ij} + 2\mu \varepsilon_{ij}$$

to obtain:

$$\sigma_{ij} = \lambda u_{k,k} \delta_{ij} + \mu(u_{i,j} + u_{j,i})$$

Introduce it to the equilibrium equations:

$$\sigma_{ij,j} + f_i = 0$$

to obtain:

$$(\lambda + \mu)u_{k,ki} + \mu u_{i,jj} + f_i = 0$$

These are the three Navier's Equations with the three displacement components u_i as the unknowns.

With the displacements known we go back to:

$$\varepsilon_{ij} = \frac{1}{2}(u_{i,j} + u_{j,i})$$

to calculate the strains ε_{ij} .

With the strains known we obtain the stresses σ_{ij}

$$\text{from } \sigma_{ij} = \lambda u_{k,k} \delta_{ij} + \mu(u_{i,j} + u_{j,i})$$

Note that there is no need to satisfy the compatibility equations:

$$\varepsilon_{ij,kl} + \varepsilon_{kl,ij} - \varepsilon_{jl,ik} - \varepsilon_{ik,jl} = 0$$

because we calculate ε_{ij} from u_i .

Mechanics of Solids: Beltrami-Michell equations

BELTRAMI-MICHELL COMPATIBILITY EQUATIONS

There are two ways to combine the 15 equations:

We can consider the stress components σ_{ij} as unknowns.

Then we introduce the strain-stress relations:

$$\varepsilon_{ij} = -\frac{\nu}{E} \sigma_{kk} \delta_{ij} + \frac{1+\nu}{E} \sigma_{ij}$$

In the compatibility equations

$$\varepsilon_{ij,kl} + \varepsilon_{kl,ij} - \varepsilon_{jl,ik} - \varepsilon_{ik,jl} = 0$$

to obtain:

$$(1+\nu)\sigma_{ij,kk} - \nu\sigma_{mm,nn}\delta_{ij} + \sigma_{pp,ij}$$

$$-(1+\nu)(\sigma_{iq,qj} + \sigma_{jr,ri}) = 0$$

From the equilibrium equations (take the derivatives):

$$\sigma_{iq,qi} + \sigma_{jr,ri} = -f_{i,j} - f_{j,i}$$

$$(1+\nu)\sigma_{ij,kk} - \nu\sigma_{mm,nn}\delta_{ij} + \sigma_{pp,ij} + (1+\nu)(f_{i,j} + f_{j,i}) = 0$$

Taking the trace of the last equation we get:

$$(1-\nu)\sigma_{mm,nn} = -(1+\nu)f_{k,k}$$

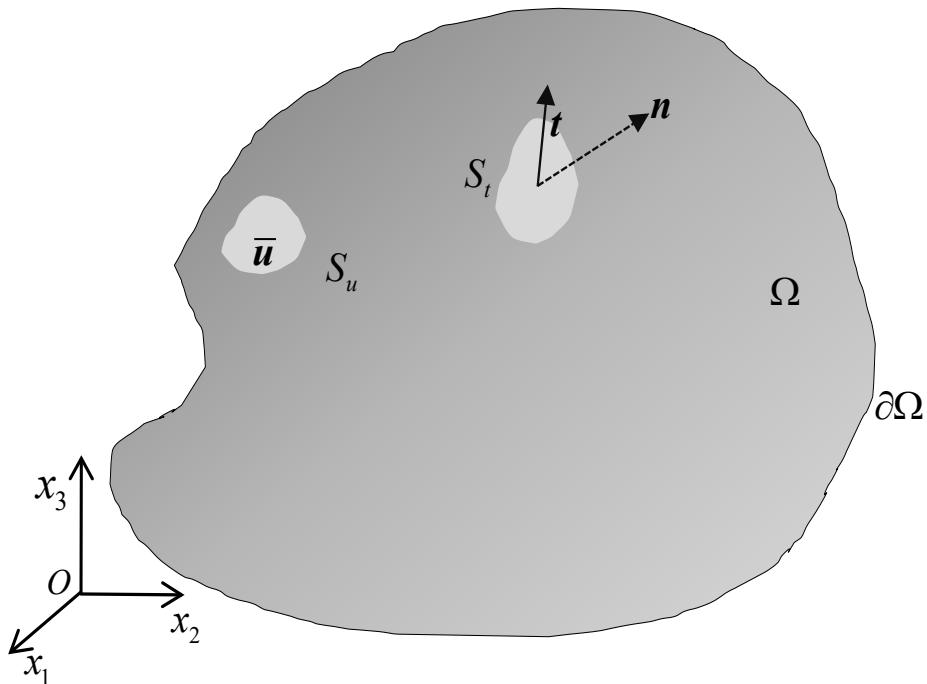
Using it in the last equation we obtain ($\nu \neq 1$) the Beltrami-Michell compatibility Eqs:

$$\sigma_{ij,kk} + \frac{1}{1+\nu} \sigma_{mm,ij} + f_{i,j} + f_{j,i} + \frac{\nu}{1-\nu} f_{n,n} \delta_{ij} = 0$$

In several problems the body forces can be assumed negligible. We have the simplification:

$$\sigma_{ij,kk} + \frac{1}{1+\nu} \sigma_{mm,ij} = 0$$

Mechanics of Solids: Boundary Value Problems in elasticity



type I, or mixed BVP: we have to specify tractions and displacements on the corresponding parts of boundaries.

type II: we have to specify displacement on the Corresponding boundary conditions.

type III: we have to specify tractions on the corresponding part of boundaries:

BOUNDARY CONDITIONS

To solve the system of equations we need the appropriate boundary conditions: In general we have three of them.

We consider a body occupying a domain Ω in \mathbb{R}^3 with boundary $\partial\Omega$.

We divide the surface boundary into two parts so that:

$$\partial\Omega = S_u \cup S_t, \quad S_u \cap S_t = \emptyset$$

S_u represents the part where displacements are prescribed:

$$u_i = \bar{u}_i \quad \text{on} \quad S_u$$

S_t represents the part where stress vector is prescribed:

$$t_i = \sigma_{ij} n_j = \bar{t}_i \quad \text{on} \quad S_t$$

Mechanics of Solids: Boundary Value Problems in elasticity

TYPE I or mixed BVP: we have to specify tractions and displacements on the corresponding parts of boundaries:

Navier Equations to solve $(\lambda + \mu)u_{k,ki} + \mu u_{i,jj} + f_i = 0$ over Ω

Subjected to Boundary Conditions:

Traction: $t_i = \sigma_{ij}n_j = \bar{t}_i$ on S_t

$$\sigma_{ij} = \lambda u_{k,k} \delta_{ij} + \mu(u_{i,j} + u_{j,i}) \rightarrow \lambda u_{k,k} n_i + \mu(u_{i,j} + u_{j,i}) n_j = \bar{t}_i \text{ on } S_t$$

Displacements: $u_i = \bar{u}_i$ on S_u

Mechanics of Solids: Boundary Value Problems in elasticity

TYPE II: Displacement Boundary Conditions

we only have displacement boundary conditions

$$S_u \neq \emptyset, \quad S_t = \emptyset$$

Navier Equations to solve $(\lambda + \mu)u_{k,ki} + \mu u_{i,jj} + f_i = 0$ over Ω

Subjected to Boundary Conditions

Displacements: $u_i = \bar{u}_i$ on S_u

Mechanics of Solids: Boundary Value Problems in elasticity

TYPE III: we have to specify tractions on the corresponding part of boundaries:

Navier Equations to solve $(\lambda + \mu)u_{k,ki} + \mu u_{i,jj} + f_i = 0$ over Ω

Subjected to Boundary Conditions

Traction: $t_i = \sigma_{ij}n_j = \bar{t}_i$ on S_t

$$\sigma_{ij} = \lambda u_{k,k} \delta_{ij} + \mu(u_{i,j} + u_{j,i}) \rightarrow \lambda u_{k,k} n_i + \mu(u_{i,j} + u_{j,i}) n_j = \bar{t}_i \text{ on } S_t$$

Mechanics of Solids: Boundary Value Problems in elasticity

The traction BVP in terms of stress components :

$$S_u = \emptyset \quad , \quad S_t \neq \emptyset$$

Here the following equations constitute the problem:

1. Equations equilibrium

$$\sigma_{ij,j} + f_i = 0 \quad \text{over } \Omega$$

2. Stress compatibility equations:

$$\sigma_{ij,kk} + \frac{1}{1+\nu} \sigma_{mm,ij} + f_{i,j} + f_{j,i} + \frac{\nu}{1-\nu} f_{n,n} \delta_{ij} = 0 \quad \text{over } \Omega$$

3. Prescribed tractions on the surface:

$$t_i = \sigma_{ij} n_j = \bar{t}_i \quad \text{on } S_t$$

Mechanics of Solids: Energy Principles

Theorem of Work and Energy:

Multiply the equations of Equilibrium :

$$\sigma_{ij,j} + f_i = 0$$

by the displacement u_i and integrate over volume Ω

$$\int_{\Omega} \sigma_{ij,j} u_i d\nu + \int_{\Omega} f_i u_i d\nu = 0$$

To proceed we will use the following in the last relation :

1. The symmetry of the stress tensor $\sigma_{ij} = \sigma_{ji}$
2. The Cauchy formula $t_i = \sigma_{ij} n_j = \bar{t}_i$
3. The relation $(\sigma_{ij} u_i)_{,j} = \sigma_{ij,j} u_i + \sigma_{ij} u_{i,j} \Rightarrow \sigma_{ij,j} u_i = (\sigma_{ij} u_i)_{,j} - \sigma_{ij} u_{i,j} = \sigma_{ij,j} u_i$

Mechanics of Solids: Energy Principles

Theorem of Work and Energy:

$$\begin{aligned}\int_{\Omega} \sigma_{ij,j} u_i dv &= \int_{\Omega} \left((\sigma_{ij} u_i)_j - \sigma_{ij} u_{i,j} \right) dv = \int_{\Omega} \left((\sigma_{ij} u_i)_j \right) dv - \boxed{\int_{\Omega} \left(\sigma_{ij} u_{i,j} \right) dv} \\ &= \boxed{\int_{\partial\Omega} \sigma_{ij} u_i n_j ds} - \boxed{\int_{\Omega} \left(\frac{1}{2} (\sigma_{ij} u_{i,j} + \sigma_{ji} u_{j,i}) \right) dv} \\ &= \int_{\partial\Omega} \sigma_{ij} u_i n_j ds - \int_{\Omega} \left(\frac{1}{2} (\sigma_{ij} u_{i,j} + \sigma_{ji} u_{j,i}) \right) dv \\ &= \int_{\partial\Omega} \sigma_{ij} u_i n_j ds - \int_{\Omega} \left(\frac{1}{2} (\sigma_{ij} u_{i,j} + \sigma_{ij} u_{j,i}) \right) dv \\ &= \int_{\partial\Omega} \sigma_{ij} u_i n_j ds - \int_{\Omega} \left(\sigma_{ij} \frac{1}{2} (u_{i,j} + u_{j,i}) \right) dv \\ &= \int_{\partial\Omega} \sigma_{ij} u_i n_j ds - \int_{\Omega} \sigma_{ij} \varepsilon_{ij} dv \\ &= \boxed{\int_{\partial\Omega} t_i u_i ds - \int_{\Omega} \sigma_{ij} \varepsilon_{ij} dv.}\end{aligned}$$

$$\int_{\Omega} \sigma_{ij,j} u_i dv + \int_{\Omega} f_i u_i dv = 0$$

$$\int_{\Omega} \sigma_{ij} \varepsilon_{ij} dv = \int_{\partial\Omega} t_i u_i ds + \int_{\Omega} f_i u_i dv$$

Mechanics of Solids: Energy Principles

Theorem of Work and Energy:

$$\int_{\Omega} \sigma_{ij} \varepsilon_{ij} dv = \int_{\partial\Omega} t_i u_i ds + \int_{\Omega} f_i u_i dv$$

Use $\sigma_{ij} = \lambda \varepsilon_{kk} \delta_{ij} + 2\mu \varepsilon_{ij}$

and recall $W(\varepsilon_{ij}) = \frac{1}{2} \lambda \varepsilon_{ii} \varepsilon_{kk} + \mu \varepsilon_{ij} \varepsilon_{ij}$

in the integral on the left hand side

$$\int_{\Omega} \sigma_{ij} \varepsilon_{ij} dv = \int_{\Omega} (\lambda \varepsilon_{ii} \varepsilon_{kk} + 2\mu \varepsilon_{ij} \varepsilon_{ij}) dv = 2 \int_{\Omega} W(\varepsilon_{ij}) dv$$

$$\frac{1}{2} \left(\int_{\partial\Omega} t_i u_i ds + \int_{\Omega} f_i u_i dv \right) = \int_{\Omega} W(\varepsilon_{ij}) dv$$

the *theorem of work and energy*,
or principle of conservation of
mechanical energy,
for an isotropic linearly elastic solid.

Mechanics of Solids: Energy Principles

Potential Energy: Π

It is defined as the difference of

Strain Energy: U

Work of the applied forces: \mathbb{W}

$$\Pi = U - \mathbb{W}$$

$$\frac{1}{2} \left(\int_{\partial\Omega} t_i u_i ds + \int_{\Omega} f_i u_i dv \right) = \int_{\Omega} W(\varepsilon_{ij}) dv$$

$$\int_{\partial\Omega} t_i u_i ds + \int_{\Omega} f_i u_i dv = 2 \int_{\Omega} W(\varepsilon_{ij}) dv$$

$$U = \int_{\Omega} \frac{1}{2} \sigma_{ij} \varepsilon_{ij} dv = \int_{\Omega} W(\varepsilon_{ij}) dv$$

$$\mathbb{W} = \int_{\partial\Omega} t_i u_i ds + \int_{\Omega} f_i u_i dv = 2U$$

$$\Pi = U - \mathbb{W} = \int_{\Omega} W(\varepsilon_{ij}) dv - \left(\int_{\partial\Omega} t_i u_i ds + \int_{\Omega} f_i u_i dv \right)$$

$$\Pi = U - \mathbb{W} = U - 2U = -U = -\frac{1}{2} \mathbb{W}$$

It is an important energy function in predicting equilibrium and modeling phenomena such as fracture.

$$\int_{\Omega} (9K\varepsilon_{ii}\varepsilon_{kk} + 2\mu\varepsilon_{ij}^d\varepsilon_{ij}^d)dv = 0$$

Mechanics of Solids: Energy Principles

Strain Energy 'partition':

Use the following deviatoric components

$$\begin{aligned}\sigma_{ij} &= \sigma_{ij}^d + \sigma_0 \delta_{ij} & \sigma_0 &= \frac{1}{3} \sigma_{kk} & \sigma_{ij}^d &= \sigma_{ij} - \frac{1}{3} \sigma_{kk} \delta_{ij} \\ \varepsilon_{ij} &= \varepsilon_{ij}^d + \varepsilon_0 \delta_{ij} & \varepsilon_0 &= \frac{1}{3} \varepsilon_{kk} & \varepsilon_{ij}^d &= \varepsilon_{ij} - \frac{1}{3} \varepsilon_{kk} \delta_{ij}.\end{aligned}$$

The strain energy density is expressed as:

$$W(\varepsilon) = \frac{1}{2} \lambda (\varepsilon_{kk})^2 + \mu \varepsilon_{ij} \varepsilon_{ij} = \frac{9}{2} K (\varepsilon_0)^2 + \mu \varepsilon_{ij}^d \varepsilon_{ij}^d$$

Energy for
volume changes

Energy for
shape changes

Stability condition by definition

$$W(\varepsilon) > 0 \quad \forall \varepsilon \neq 0$$

$$\begin{array}{c} \uparrow \\ K > 0 \text{ and } \mu > 0 \end{array}$$

Mechanics of Solids: Energy Principles

Uniqueness of solution:

Consider two solutions

$$(\mathbf{u}^{(1)}, \boldsymbol{\varepsilon}^{(1)}, \boldsymbol{\sigma}^{(1)}) \quad (\mathbf{u}^{(2)}, \boldsymbol{\varepsilon}^{(2)}, \boldsymbol{\sigma}^{(2)})$$

satisfying the field equations

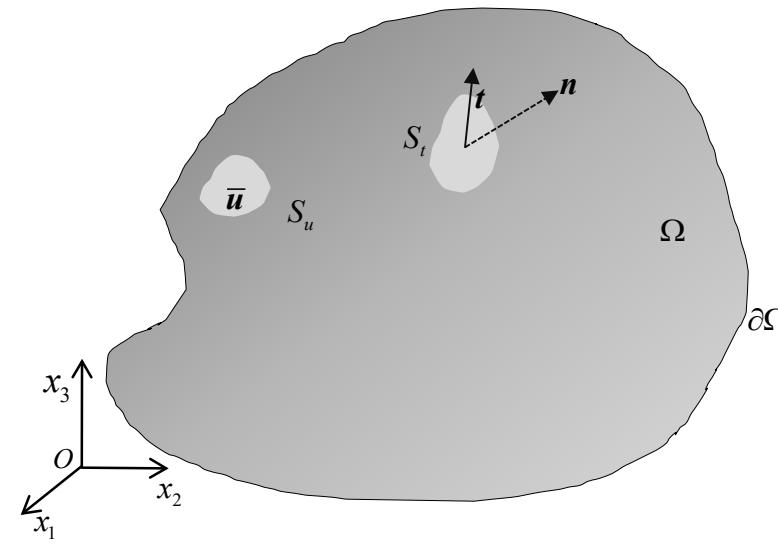
$$\sigma_{ij,j} + f_i = 0; \quad \varepsilon_{ij} = \frac{1}{2} (u_{i,j} + u_{j,i});$$

$$\sigma_{ij} = \lambda \varepsilon_{kk} \delta_{ij} + 2\mu \varepsilon_{ij}$$

and the boundary conditions

$$u_i = \bar{u}_i \quad \text{on} \quad S_u$$

$$t_i = \sigma_{ij} n_j = \bar{t}_i \quad \text{on} \quad S_t$$



$$\text{if } S_u \neq \emptyset \Rightarrow \mathbf{u}^{(2)} = \mathbf{u}^{(1)}, \quad \boldsymbol{\varepsilon}^{(2)} = \boldsymbol{\varepsilon}^{(1)}, \quad \boldsymbol{\sigma}^{(2)} = \boldsymbol{\sigma}^{(1)}$$

$$\text{if } S_u = \emptyset \Rightarrow \mathbf{u}^{(2)} = \mathbf{u}^{(1)} + \mathbf{w}, \quad \boldsymbol{\varepsilon}^{(2)} = \boldsymbol{\varepsilon}^{(1)}, \quad \boldsymbol{\sigma}^{(2)} = \boldsymbol{\sigma}^{(1)}$$

(\mathbf{w} is an infinitesimal rigid body rotation).

Mechanics of Solids: Energy Principles

Uniqueness of solution

Define the differences:

$$\mathbf{u} = \mathbf{u}^{(2)} - \mathbf{u}^{(1)}, \quad \boldsymbol{\varepsilon} = \boldsymbol{\varepsilon}^{(2)} - \boldsymbol{\varepsilon}^{(1)}, \quad \boldsymbol{\sigma} = \boldsymbol{\sigma}^{(2)} - \boldsymbol{\sigma}^{(1)}$$

$\Rightarrow \mathbf{u}, \boldsymbol{\varepsilon}, \boldsymbol{\sigma}$ satisfy the equations with $f_i = 0$;

$$\sigma_{ij,j} + f_i = 0; \quad \sigma_{ij} = \lambda \varepsilon_{kk} \delta_{ij} + 2\mu \varepsilon_{ij}$$

$$\varepsilon_{ij} = \frac{1}{2} (u_{i,j} + u_{j,i});$$

and the boundary conditions

$$u_i = 0 \text{ on } S_u, \quad t_i = \sigma_{ij} n_j = 0 \text{ on } S_t$$

From energy we have

$$\int_{\partial\Omega} t_i u_i ds + \int_{\Omega} f_i u_i dv = \int_{\Omega} \left(9K(\varepsilon_0)^2 + 2\mu \varepsilon_{ij}^d \varepsilon_{ij}^d \right) dv$$

$$u_i = 0; \quad t_i = \sigma_{ij} n_j = 0$$

$$\int_{\Omega} \left(K \varepsilon_{ii} \varepsilon_{kk} + 2\mu \varepsilon_{ij}^d \varepsilon_{ij}^d \right) dv = 0$$

Because $K > 0$ and $\mu > 0$

$$\varepsilon_{ij} = \varepsilon_{ij}^d = 0$$

$$\Rightarrow \sigma_{ij} = 0$$

Mechanics of Solids: Energy Principles

Theorem of Virtual Work

Virtual displacement:

- It is an arbitrary displacement which does not affect the force system acting on the body during its application.
- Its components δu ($\delta u_1, \delta u_2, \delta u_3$) are small, continuous and single valued.
- All forces remain constant in magnitude and direction during application of virtual displacement.

The virtual displacement satisfies:

$$\delta u_i = 0 \text{ on } S_u$$

$$\delta \varepsilon_{ij} = \frac{1}{2}(\delta u_{i,j} + \delta u_{j,i})$$

$$\delta \varepsilon_{ij} = \frac{1}{2} \delta \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) = \frac{1}{2} \left(\frac{\partial}{\partial x_j}(\delta u_i) + \frac{\partial}{\partial x_i}(\delta u_j) \right)$$

Multiply the equilibrium Eqs by δu_i and follow the same steps as in the case of the theorem of work and energy.

For a body in equilibrium

$$\sigma_{ij,j} + f_i = 0 \text{ over } \Omega$$

$$t_i = \sigma_{ij} n_j = \bar{t}_i \text{ on } S_t$$

$$u_i = \bar{u}_i \text{ on } S_u$$

$$\int_{\Omega} \sigma_{ij} \delta \varepsilon_{ij} dv = \int_{S_t} \bar{t}_i \delta u_i ds + \int_{\Omega} f_i \delta u_i dv$$

Virtual
strain energy

Virtual work
by applied forces

Mechanics of Solids: Energy Principles

Principle of minimum potential energy

of all displacement fields satisfying the continuity and boundary conditions, of the solid in equilibrium, the actual displacement field makes the potential energy a stationary value.

From the principle of virtual work we have:

$$\delta U = \int_{\Omega} \sigma_{ij} \delta \varepsilon_{ij} dv = \int_{S_t} \bar{t}_i \delta u_i ds + \int_{\Omega} f_i \delta u_i dv$$

$$\delta \mathbb{W} = \int_{\partial\Omega} \sigma_{ij} n_j \delta u_i ds + \int_{\Omega} f_i \delta u_i dv$$

With $\Pi = U - \mathbb{W}$

$\delta \Pi = \delta (U - \mathbb{W}) =$
 $= \int_{\Omega} \sigma_{ij} \delta \varepsilon_{ij} dv - \left(\int_{\partial\Omega} \sigma_{ij} n_j \delta u_i ds + \int_{\Omega} f_i \delta u_i dv \right) = 0$

Mechanics of Solids: Energy Principles

For a body in equilibrium

$$\sigma_{ij,j} + f_i = 0 \quad \text{over } \Omega$$

$$t_i = \sigma_{ij} n_j = \bar{t}_i \quad \text{on } S_t$$

$$u_i = \bar{u}_i \quad \text{on } S_u$$

A displacement field \tilde{u} is *kinematically admissible* if it respects the assigned displacements on the boundary:

$$\tilde{u}_i = \bar{u}_i \quad \text{on } S_u$$

Theorem of minimum potential energy

For a body in equilibrium and having a solution u_i

For any kinematically admissible displacement \tilde{u}_i the potential energies satisfy the condition

$$\Pi(u) \leq \Pi(\tilde{u}_i)$$

Define

$$\delta u_i = \tilde{u}_i - u_i$$

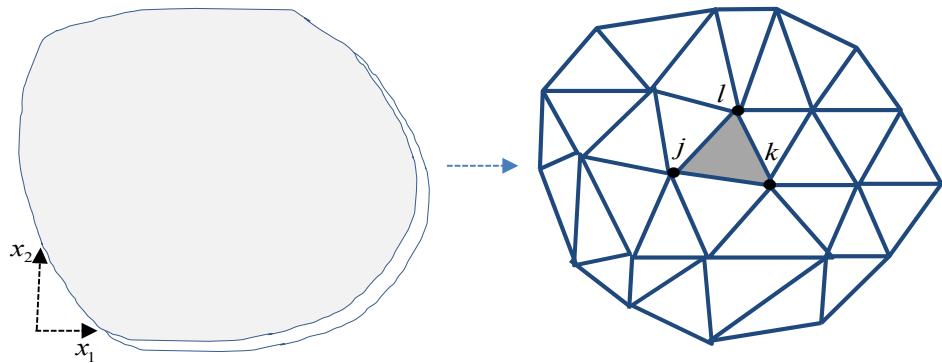
Use the principle of virtual work to obtain:

$$\Pi(u_i + \delta u_i) - \Pi(u_i) = \int_{\Omega} \frac{1}{2} \frac{\partial^2 W(\varepsilon_{ij})}{\partial \varepsilon_{ij} \partial \varepsilon_{kl}} \delta \varepsilon_{ij} \delta \varepsilon_{kl} dv \geq 0$$

Mechanics of Solids: Energy Principles

Application to Finite Elements:

A body is discretized with m triangular elements



For each element define

1. Nodal displacements:

$$(\tilde{\delta})_e = (u_1^j, u_2^j, u_1^k, u_2^k, u_1^l, u_2^l)$$

2. Displacement functions:

$$(\tilde{f})_e = (u_i(x_1, x_2), u_2(x_1, x_2))$$

3. Strain displacement relations:

$$(\varepsilon)_e = [B](\tilde{\delta})_e$$

4. Constitutive relations for each element:

$$(\sigma)_e = [C](\varepsilon)_e$$

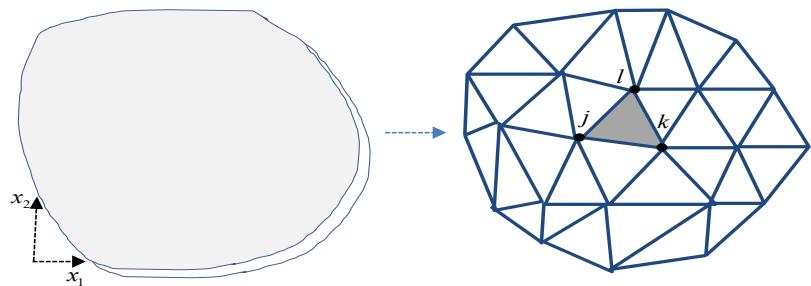
Principle of minimum potential energy for the entire body:

$$\sum_1^m \int_{\Omega_e} \sigma_{ij} \delta \varepsilon_{ij} dv - \sum_1^m \int_{\partial \Omega_e} \bar{t}_i \delta u_i ds - \sum_1^m \int_{\Omega_e} f_i \delta u_i dv = 0$$

Mechanics of Solids: Energy Principles

Application to Finite Elements:

A body is discretized with m triangular elements



Principle of minimum potential energy for the Entire body:

$$\sum_1^m \int_{\Omega_e} \sigma_{ij} \delta \varepsilon_{ij} dv - \sum_1^m \int_{\partial \Omega_e} \bar{t}_i \delta u_i ds - \sum_1^m \int_{\Omega_e} f_i \delta u_i dv = 0$$

We introduce the displacements, strain-displacements and constitutive equations to obtain

$$\sum_1^m (\delta \tilde{\delta})_e^T \left[[k]_e (\tilde{\delta})_e - (Q)_e \right] = 0$$

For each element we have

$$[k]_e (\tilde{\delta})_e = (Q)_e$$

For the entire body we have

$$(\delta \tilde{\delta})^T \left[[K] (\tilde{\delta}) - (Q) \right] = 0$$

→ $[K] (\tilde{\delta}) = (Q)$

with

$$[K] = \sum_1^m [k]_e \quad (Q) = \sum_1^m (Q)_e$$