Mechanics of Solids: Energy principles

Work and Energy in linear elasticity

* Potential energy
e Stability and uniqueness of solution

* Principle of virtual work
* Principle of minimum potential energy
* Examples

From the book: Mechanics of Continuous Media: an Introduction
1. J Botsis and M Deville, PPUR 2018.
2. ) Botsis, Appendix A Notes on Energy



Mechanics of Solids: Equations of E

asticity

FORMULATION OF THE BOUNDARY VALUE PROBLEM

We consider a solid, of an isotropic homogeneous
linearly elastic material, and subjected to body forces
over it and prescribed displacements or tractions

on its boundary. The following equations are available:

1. The 3 eqs of equilibrium:
o, +/,=0 , divo+f=0

( fis body force vector)

2. The 6 equations defining the strain-displacement relation:

8..:%<ui’j+uj,i) : SZ%(VH‘F(VIJ)T)

y

3. The 6 equations defining the isotropic homogeneous

stress-strain relation:

0, = Aeyu 0, +2ue; , o =Arel+2ue

There are 15 equations with 15 unknowns:
Three displacement components: 1;
Six strain components: Eij

Six stress components: Tij

mm=) The problem is well posed

We know that a linear elastic solid satisfies
the second principle of thermodynamics
and that there exists a potential function
which, has a quadratic form in the strains
(or the stresses).

oW (e;)
OE..

1
Wie,)= Eieﬁekk + e,  with 0, =
ij




Mechanics of Solids: Navier equations

NAVIER’S EQUATIONS

There are two ways to combine the 15 equations:

The first one is to consider the displacement
components U; asthe unknowns.

1
» Introduce & :E(ui’j +uj’,-) in

= Agy0; + 21,

J
to obtain:
Oij = Mgk 055 + plwi j + wj ;)
Introduce it to the equilibrium equations:

lJJflO

to obtain:

(A 4 ) g i + poug, jj T Ji=0

— These are the three Navier’s Equations with

the three displacement components 1,
as the unknowns.

With the displacements known we go back to:
1
&y = E(ui,j + “j,i)
to calculate the strains £
With the strains known we obtain the stressesaij
from o, =Au 0, +p(u,  +u;,)

Note that there is no need to satisfy the
compatibility equations:

Cijkl + Eklij — Ejl,ik — Eik,j1 = 0

because we calculate €ij fromU;
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BELTRAMI-MICHELL COMPATIBILITY EQUATIONS

There are two ways to combine the 15 equations:

We an consider the stress components 0 as unknowns.

Then we introduce the strain-stress relations:

v 1+v
€ __Egkké‘ij—i_ Oy
In the compatibility equations
Sijkl + Eklij — Ejlik — Sik,jl = 0
to obtain: 1 5.
( +V)O—ij kk mm nn " ij +O-pp,ij
—(1+V)(0w, g 7)) =0

From the equilibrium equations (take the derivatives):

O-iq,ql ]r ri = _-f; ] f; I

A 4

(1 + V)O-z'j,kk O um nnél] T O-Ppa?]'

+(1+v)(f,;+f,.)=0
Taking the trace of the last equation we get:

(=)0, 0 ==(1FV) S

Using it in the last equation we obtain (v * 1)
the Beltrami-Michell compatibility Egs:

1
O-ij,kk—l_l_i_v mm,ij fl]+](]l+ fnnélj_o

In several problems the body forces can be
assumed negligible. We have the simplification:

1

B (0t

I+v




Mechanics of Solids: Boundary Value Problems in elasticity

0Q)

type |, or mixed BVP: we have to specify tractions and

displacements on the corresponding parts of boundaries.

type ll: we have to specify displacement on the
Corresponding boundary conditions.

type lll: we have to specify tractions on the
corresponding part of boundaries:

BOUNDARY CONDITIONS

To solve the system of equations we need the appropriate
boundary conditions: In general we have three of them.

We consider a body occupying a domain €2 in R3 with
boundary 0Q).

We divide the surface boundary into two parts so that:
Q=S50S , S NS =

S, represents the part where displacements are
prescribed:

U, =U; on S

l u
St represents the part where stress vector is prescribed:

ti:O-l-]-nj:ti on S

t
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Type | or mixed BVP: we have to specify tractions and displacements on the
corresponding parts of boundaries:

Navier Equations to solve (A + t)u, . + pu, .+ f, =0 over Q

L Jjj

Subjected to Boundary Conditions:

Tractions: £, =o,n, =% on S,

— O _ﬁukké‘ +,u(u”+u]l) |:>/1ukkn -|—lu(ulj—|—u )n _z‘ on S

Displacements: u. =u, on S

u




Mechanics of Solids: Boundary Value Problems in elasticity

TyPE ll: Displacement Boundary Conditions
we only have displacement boundary conditions |S, # &

, S, =

t

Navier Equations to solve (A + p)u, , +pu; .+ f, =0 over Q

Subjected to Boundary Conditions

Displacements: U, =U. on S,




Mechanics of S

olids: Boundary Value Problems in elasticity

TyPE lll: we have to specify tractions on the corresponding part of boundaries:

Navier Equations

tosolve (A+u, ,,+pu, .+ f, =0 over Q

L Jjj

Subjected to Boundary Conditions

Tractions: ¢, =o,n,

=1 on §,

— O _ﬁukké‘ +,u(u”+u]l) |:>/1ukkn -|—lu(ulj—|—u )n _z‘ on S




Mechanics of Solids: Boundary Value Problems in elasticity

The traction BVP in terms of stress components: |S =0 , S #J
Here the following equations constitute the problem:
1. Equations equilibrium
o, +f,=0 over Q
2. Stress compatibility equations:
O ik +$O_mm,ij + 1t +iﬁ1,n5ij =0 over €

3. Prescribed tractions on the surface:

t,=0c,n, =1t on §,
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Theorem of Work and Energy:

Multiply the equations of Equilibrium :
oy +f =0

by the displacement Y; and integrate over volume Q)
j o, U ldv+j Judv=0

To proceed we will use the following in the last relation :
1. The symmetry of the stress tensor 0, =0,

2. The Cauchyformula ¢t =o.n, =¢

! i ]

3. Therelation (o,u,),, =0, u,+ou,, = o, u =(0u), —0ou, =0, U
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Theorem of Work and Energy:

;U dv = IQ((O'U.L{Z.),]. —0,U; ; )dv = .&((ay_ui),j )d _

1
LQ oun,ds IQ (5 (o.u, , +ou, ) dv
/
p 1
= Ogtnds = | E(Gyui’j +o,u;;) dv
J 1
= Ogtnds = | E(GUMZ jtoau) dv
q 1
= ounds—| | oy E(u”j +u,,) jdv
= oun ds —.Qaijeija’v
=] tuds —IQ 0,€;dV.

[ (o0, v

—»L} o, Udv+ jQ Judv=0

Jao

.g.jdv = LQ tu.ds+ IQ fu.dv

ji




Mechanics of Solids: Energy Principles

Theorem of Work and Energy:

I 0;€,;dv = jagtiuids+jgﬁuidv

Use 0, = 4g,0, +2ue,

1
and recall W(e,)=— /la”gkk + ug €,

v

%( o0 fiyds + IQ fiuidv) B -[Q W (e )y

in the integral on the left hand side

the theorem of work and energy,

j 0;€;dV = I AE;Ey + 2, 811 V= 2f W (e;)dv or principle of conservation of

mechanical energy,
for an isotropic linearly elastic solid.
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Potential Energy: II |
U= Iggayegdv = IQ W (e, )dv

It is defined as the difference of
W = J;ﬂ tu.ds + IQ fu.dv=2U

<

n=v-w=| W(el.j)dv—( [ tuds+] fl.ul.dv)

Strain Energy: U

Work of the applied forces: W

[H=U-w
1
i H:U—W:U—2U=—U=—EW
E(Iag tl.ul.ds+J.Q fl.ul.dv) = IQ W (e, )dv
It is an important energy function in
LQ tu.ds + _[Q Ju.dv= ZIQ W (e, )dv predicting equilibrium and modeling
phenomena such as fracture.




IQ(QKSffgkk +2uyey Jdv=0

Mechanics of Solids: Energy Principles

Strain Energy ‘partition’:
Stability condition by definition

Use the following deviatoric components .
Wie 0 Ve #0
o . d L (€) > #
Oij — O'?-_j T O'[)O@'j og = §G'kk O--i.j — 045 — —3 U,I,;,!;;f)-f_j *
' 1
. d K o ~ d K
fij = Sij TE00ij 0= g fkk  Cij = Sij = 5 Ehkdis K >0and >0

The strain energy density is expressed as:

_ I ) K (en)
|

l

Energy for Energy for
volume changes shape changes
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Uniqueness of solution:

Consider two solutions

2 2 2
(u“),g(”,a“)) (u( ) g? gt >)

satisfying the filed equations

and the boundary conditions

u.=u, on S,

t,=o.n, =t on S,

oQ2

. 2 1 2 1 2 1
if S #@ B N PG S S L)

if S =0 = y=uyVsp 2=g0 g®=g

( w is an infinitesimal rigid body rotation).
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Uniqueness of solution

Define the differences:

u=u?—uy" (2)

 e=¢ (1) )

-g’, o=0"-0

= u, &, o  satisfy the equations
with f, =0;

o, + [, =0; 0, =Agy0; +2us,

1

and the boundary conditions

From energy we have

)

u,=0ons, , t=on =0 onls,

A 4

L}Q tu.ds+ jQ Ju.dv= IQ(9K (& )2 + 2,u8§8;.’ )dv
[
u, =0y t=o,n =0

| 4
jQ(Kgﬁgkk +2ue; ] )dv =0

Because K > 0 and p > 0




Mechanics of Solids: Energy Principles

Theorem of Virtual Work

Virtual displacement:

It is an arbitrary displacement which does not
affect the force system acting on the body
during its application.

Its components ou (ou,,ou,,ou,) are small,
continuous and single valued.

All forces remain constant in magnitude and
direction during application of virtual
displacement.

For a body in equilibrium

over Q)

\ 4

The virtual displacement satisfies:
ou=0 on S,

1
o€, = > (ou, ; +ou,,)

o
PO NPT TR B SR
72 ox; ox | 2| 0ox, ox, '

Multiply the equilibrium Egs by 51/!1. and follow
the same steps as in the case of the theorem
of work and energy.

U,-j,j+f,-=O

t,=c,n, =t on S

U, =u, on Su

1

A 4

IQ 0,0, dv = Lt tou.ds + IQ f.ou,dv
T r

Virtual Virtual work
strain energy by applied forces
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Principle of minimum potential
energy

of all displacement fields satisfying the continuity
and boundary conditions, of the solid in
equilibrium, the actual displacement field makes
the potential energy a stationary value.

From the principle of virtual work we have:

0U = | o,06,dv= Touds+|_fioudv

oW = [ _oynduds+|_foudy

] 1

with II1=U—-TW

|

\4

ST =6(U—-W)=

= IQ 0,0€,dv— (I@Q o,n;0uds + _‘-Q fiéuidv) =0
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For a body in equilibrium

al.j’j+fl.:0 over Q)

I. =0.1n. :tl.

on §,
! 0"

u,=u, on S

u

A displacement field # is kinematically
admissible if it respects the assigned
displacements on the boundary:

u.=u, on §

u

Theorem of minimum potential
energy

For a body in equilibrium and having a solution U,

For any kinematically admissible displacem
the potential energies satisfy the condition

M) <T(@)

ent 1/71.

Define

Use the principle of virtual work to obtain:

H(ui +5ui)_H(ui) — | .~

1 82W(81.j)

@2 Oeg,0¢,

0¢,,0¢,dv 20
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Application to Finite Elements:

A body is discretized with m triangular elements

Principle of minimum potential energy for the
entire body:

Z.[Qe Ul'fégijdv - Zl‘,_[age t.ouds — 21:'[9 foudv=0

For each element define
1. Nodal displacements:

(5) :(u{,ug,uf,uf,uf,ué)
2. Displacement functions:
(f)e = (ui (x;,X,),u, (xnxz))

3. Strain displacement relations:

(e), =[B](5)

4. Constitutive relations for each element:

(o). =[C](e),
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Application to Finite Elements:

A body is discretized with m triangular elements For each element we have

~

[1,(5) =(0),

e

For the entire body we have

Principle of minimum potential energy for the (55)T [[K](g) _(Q) } =0

Entire body: i

: s =[£](%)=(2)

Z er 6,06, dv - le o houds - le jge foudv=0

We introduce the displacements, strain-displacements with .

and constitutive equations to obtain Kl= k _ N
K]=2[] (0)-2(0),

3(09)[111.(5), (0 ] -0
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